
An Experimental Pipeline for Automated
Reasoning in Natural Language

Tanel Tammet1[0000−0003−4414−3874], Priit Järv1[0000−0001−7725−543X], Martin
Verrev1[0000−0003−4890−9283], and Dirk Draheim2[0000−0003−3376−7489]

1 Applied Artificial Intelligence Group,
Tallinn University of Technology, Tallinn, Estonia

{tanel.tammet,priit.jarv1,martin.verrev}@taltech.ee
2 Information Systems Group, Tallinn University of Technology, Tallinn, Estonia

dirk.draheim@taltech.ee

Abstract. We describe an experimental implementation of a logic-based
end-to-end pipeline of performing inference and giving explained answers
to questions posed in natural language. The main components of the
pipeline are semantic parsing, integration with large knowledge bases, au-
tomated reasoning using extended first order logic, and finally the trans-
lation of proofs back to natural language. While able to answer relatively
simple questions on its own, the implementation is targeting research into
building hybrid neurosymbolic systems for gaining trustworthiness and
explainability. The end goal is to combine machine learning and large
language models with the components of the implementation and to use
the automated reasoner as an interface between natural language and
external tools like database systems and scientific calculations.

1 Introduction

Question answering and inference using natural language is a classic A.I. area,
with a long history of little success using symbolic methods, able to solve only
small problems with a limited structure. The recent machine learning (ML)
systems, in particular, the Large Language Model (LLM) implementations of
the BERT and GPT families are, in contrast, often able to give satisfactory
answers to nontrivial questions.

However, the current LLMs are neither trustworthy nor explainable. They
have a well-known tendency of “hallucinating”, i.e. giving wrong answers and
inventing actually nonexistent entities and facts. The problems of explicitly con-
trolling the output and giving explanations for the solutions appear to be very
hard for LLMs. An optimistic view of LLMs suggests that end-to-end learning
can be improved to overcome these issues, while a more pessimistic view sug-
gests that the problems are inherent and stem from the lack of an internal world
model. The proponents of the latter view propose to build hybrid neurosymbolic
systems, combining machine learning and symbolic methods of various kinds. In-
deed, the research in the field of neurosymbolic systems has become quite active.

2 T. Tammet et al.

The recent survey [12] points to a wider interest in connecting natural language
systems to external software like databases and scientific calculations.

Using logic for natural language inference (NLI) in combination with ML
may potentially alleviate the problems with LLMs and provide a glue to connect
external systems to natural language interfaces. However, using logic directly for
processing natural language is hard, for a number of reasons:

– Semantic parsing, i.e. translating natural language to logic, is extremely hard
due to the highly complex and exception-rich nature of natural language.

– Existing knowledge bases of “common sense” do not cover a critical mass of
the basic understanding of the world even a small child possesses.

– Classical first order reasoning itself cannot cope with contradictory knowl-
edge items, probabilistic or uncertain information and exceptions to rules.

– Finding logic-based proofs often requires long proofs and the huge knowledge
base causes a quick combinatorial explosion of the search space.

The motivation behind the research described in the paper is the following
hypothesis: all the main problems described above can be alleviated by using
ML techniques tailored separately for each particular problem. The current pa-
per does not introduce any ML techniques for the problems above. The goal
of our system is to serve as a backbone for research into combining the sym-
bolic methods with ML. Our hypothesis is that by gradual improvement and
combination of the existing symbolic subsystems with ML techniques it is pos-
sible to eventually build a question answering system which has enough power,
trustworthiness and explainability to be practically useful in various application
areas.

2 Related Work

Here we will only consider projects building a full NLP inference system. The
performance of older pure symbolic or logic-based methods like LogAnswer [6]
remained at the level of specific toy examples and never achieved capabilities
required for wider applicability. The long-running CYC project [18], although
having several successes, did not succeed with its original stated goals, which is
often used as an argument against symbolic systems.

A popular area for language processing is converting human queries to SQL
or SPARQL queries. These systems typically do not handle rules expressed in
natural language. The projects closest to ours use reasoners with a relatively
limited capacity, like BRAID [10], which uses extended SLD+ reasoner with
probabilistic rules and fuzzy unification, CASPR [15], which uses an ASP rea-
soner incorporating default logic, NatPro [1],[2], which uses a Natural Logic
prover. The latter is the only such project we know to be publicly available:
https://github.com/kovvalsky/prove SICK NL

The majority of research in neurosymbolic reasoning for natural language
combines ML with weak forms of symbolic systems, typically taxonomies and

Automated Reasoning in Natural Language 3

triple graph knowledge bases like ConceptNet[20]. However, there are a few re-
search projects combining ML with reasoning in quantified first order logic,
although we are not aware of any such systems being publicly available. Note-
worthy projects involving quantified logic are SQuARE [4], BRAID [10] and
STAR [17].

We are not aware of any current projects except ours using high-performance
full first order reasoners for the NLI task.

3 Natural Language Inference and Question Answering

The described pipeline is able to handle both the natural language inference
(NLI) tasks (given a premise, determine whether a given hypothesis is true, false
or indeterminate) and the closely related question answering tasks of finding a
specific object matching a given criteria.

We will use a few simple examples throughout the paper. The expected an-
swer to the first example “If an animal likes honey, then it is probably a bear.
Most bears are big, although young bears are not big. John is an animal who
likes honey. Mike is a young bear. Who is big?” is “Likely John”. The expected
answer to the second example “The length of the red car is 4 meters. The length
of the black car is 5 meters. The length of the red car is less than 5 meters?” is
“True”.

It is worth noting that these examples are solved correctly by the current
version of ChatGPT: moreover, ChatGPT is able to give a satisfactory expla-
nation of the reasoning behind the answers. However, if we replace the known
words in these questions above with invented words and insert additional irrel-
evant information, our system still finds the expected answer, while ChatGPT
fails. The modified first example: “If a greezer likes foozers, then it is probably
a drimm. Greezers can eat frozen bread. Most drimms are red, although young
drimms are not red. John likes bread. John is a nice greezer who likes foozers.
Mike is a young drimm. Mike can eat a lot. Penguins are birds who cannot
fly. Who is red?”. The modified second example: “The length of the barner is
200000000 meters. The length of the red foozer is 312435 meters. The length of
the black foozer is 512000 meters. The length of the yellow foozer is 1000000
meters. The length of the red foozer is less than 312546 meters?”. However, the
answers given by ChatGPT vary over time, i.e. experiments with ChatGPT are
not reproducible.

4 The Question Answering Pipeline

Our system is publicly available at http://github.com/tammet/nlpsolver. It re-
quires Linux and should be easy to install. The implementation consists of four
main software systems. The pipeline driver calls the external Stanza parser from
Stanford, giving a Universal Dependencies (UD) graph, then runs the semantic
parser on the UD graph, calls the reasoner, and finally builds a natural language
answer along with the explanation built from the proofs given by the reasoner.

4 T. Tammet et al.

The pipeline driver, parser and answer construction components consist of over
400 Kbytes of Python code. Before running the solver, a small Python server
component has to be started, to initialize the external UD parser Stanza and read
a commonsense knowledge base into shared memory. For reasoning the pipeline
calls our commonsense reasoner GK, written in C: this is the largest and the most
complex part of the pipeline. There is a separate Python program for regression
tests, along with several Python files containing sub-tests, currently over 1600
separate NLI tasks. The pipeline driver is called from a command line, with a
natural language text and question as a command line argument, plus a number
of optional arguments to control the behaviors like the amount of output.

4.1 Semantic Parsing

The parser takes English strings of natural language text as input and outputs
extended clausified first-order logic formulas encoded in JSON-LD-LOGIC [24].
The main extension is adding numerical confidence to clauses and implementing
default logic by including special literals to encode exceptions.

Parsing consists of a number of phases, each adding new structural details
to the results of the previous phases. For the most part, the phases are imple-
mented procedurally, without using explicit transformation rules: we found that
the more complex aspects of translation cannot be easily expressed with the
help of simple transformation rules. In particular, the correct interpretation of
a sentence depends heavily on previous sentences and a collected database of
objects which have been talked about.

Conversion to Universal Dependencies (UD) format We use the external
Stanza parser to get the UD format dependency graphs from input sentences.
Stanza itself uses pretrained neural models. We first preprocess English strings
to avoid several typical mistakes of the Stanza conversion, and then interleave
Stanza with simplifying transformations from the UD format to a simplified
English text, which is then fed to Stanza to get the final result.

Converting UD to Logic One of the strengths of UD representation given by
Stanza is a high level of detail. The first subphase of conversion is restructuring
the UD graph to a semi-logical representation explicating the outward logical
structure around the subject/verb, object/verb or subject/verb/object tuples.
The following subphases attach different kinds of properties to words. For ex-
ample, the outmost structure constructed for the sentence “Most bears are big,
although young bears are not big.” is
[and, svo[bear,be,big], svo[bear,be,big]] which is then extended to
[and, svo[bear,be,big], svo[[props,young,bear],be,big]]. The words in
these structures are key-value objects containing both the initial UD information
and additional details added during the phases.

The next subphase results in the extended logic in a non-clausified form, i.e.
using explicit quantifiers. The conversion uses the previous structure recursively,

Automated Reasoning in Natural Language 5

taking into account the details of the original UD structure to find additional
critical information like articles, negation, different kinds of quantifiers etc. We
follow the approach of Davidsonian semantics, introducing event identification
variables, while not taking the neo-Davidsonian path of splitting all relations to
their minimal components.

For the coreference resolution we calculate the weighted heuristic scores for all
candidate words, using also taxonomies of Wordnet. Another inherently complex
task is determining whether a noun stands for a concrete object or should be
quantified over. Importantly, any object detected is stored in a special data
structure with new information about the object possibly added as the parsing
process proceeds.

Let us consider an example sentence “John is a nice animal who likes honey.”
It would be first converted to a conjunction of three formulas

isa(animal, c1 John)

prop(nice, c1 John, generic, generic, ctxt(Pres, 1))

def0(c1 John)

∀S (def0(c1 John) ↔
∃X isa(honey, X) & (∃A do2(like, c1 John, X, A, ctxt(Pres, S))))

The system determined that in this sentence “John” refers to a concrete ob-
ject and immediately created a Skolem constant c1 John, storing it for possible
later use and extension. Here it also created a new definition def0 for encod-
ing the complex property of “John”: liking honey. The properties of objects
like given in the second formula above also encode the intensity of the property
(slightly/very) and the comparative class: for example, saying “John is a very
large animal ...” would create prop(large, c1 John, 3, animal, ctxt(Pres, 1)).
The constant generic indicates that intensity is not known or that the property
is not comparative, i.e. does not relate to a specific class. The term ctxt(Pres, 1)
encodes contextual aspects: the present tense and a concrete situation number
in a possible sequence of situations created by different actions. The variable A

in the last formula is an identifier of an action, which can be given additional
properties, like place, time or assistive objects of an action, in the Davidsonian
style.

The system is also able to handle simpler questions involving sizes of sets,
like “An animal had two strong legs. The animal had a strong leg?”, “John
has three big nice cars. John has two big cars?”, and measures, like “The
length of the red car is 4 meters. The length of the black car is 5 meters.
The length of the red car is less than 5 meters?”. We use terms encoding
the sets and measures: for example, the first sentence of the last question is
translated to a formula containing a standard equality predicate, an integer and
several properties involving the measure term, including the main statement
4 = count(measure1(length, c1 car, meter, ctxt(Pres, 1))

6 T. Tammet et al.

Instance Generation In order to answer questions without indicating concrete
objects, like “Adult bears are large animals. Cats are small animals. Who is a
large animal?” we need constants representing an anonymous instance of a class,
essentially a “default adult bear”, a “default bear” and a “default cat”. For each
such object the system generates a constant along with the formulas indicating
its class and properties, enabling the system to produce an answer “An adult
bear”.

Question Handling Actual questions like “Who is big?” or “The length of the
red car is less than 5 meters?” require special handling. The automated reasoner
GK used in the pipeline employs the well-known answer predicate technique
to construct and output the required substitution term. All the variables in
the question formula will be instantiated and output, potentially resulting in
a large combination of different answers. The “Who is big?” question will be
first translated to ∃X, Y, Z prop(big, X, generic, Y, Z) indicating that we are not
restricting the “bigness” or context in the question. However, we do not want
to enumerate different “bigness” values or contexts in the answer, thus we wrap
the formula into a definition (say, def2) over a single variable X, and search
for different substitutions into def2(X) only. Asking questions about location
and time is implemented by constructing a number of questions over relations
“near”, “on”, ‘ “at”, etc.

Clausification and Simplification The system contains a clausifier skolemiz-
ing the formulas and converting these to a conjunctive normal form. The clausi-
fication phase also performs several simplifications, some of which are possible
due to the known properties of the constructed formulas. Since nontrivial for-
mulas may be converted into several clauses, the clausifier decides how to spread
the numeric confidence of the formula and the exception literals in the formula
into the clauses.

4.2 Integration with Knowledge Bases

The knowledge base provides the world model of our reasoning system. To answer
the query “Tweety is a bird. Can Tweety fly?”, the system needs to have the
background knowledge that birds can fly. We construct the knowledge base (KB)
using default logic rules augmented with numeric confidences. A small part of
the knowledge base forms a core world model and is built by hand, while the
bulk of the knowledge is integrated automatically from existing common sense
knowledge (CSK) sources as described in [9].

We have integrated eight published knowledge graphs: ConceptNet [20], We-
bChild [25], Aristo TupleKB [13], Quasimodo [19], Ascent++ [14], UnCommon-
Sense [3], ATOMIC20

20 [8] and ATOMIC10x [27]. These CSK sources are collec-
tions of relation triples. The majority of the sources contain natural language
clauses or fragments in the triple elements. We have built a specialized pattern
matching semantic parser to convert the relations to first order logic rules with

Automated Reasoning in Natural Language 7

the default logic extensions and estimated numeric confidence. The full knowl-
edge base contains 18.5 million rules, with over 15 million of those are related
to taxonomy: inferring a property or an event from the class of an entity.

4.3 Automated Reasoning

We use our automated reasoner GK to solve the problems generated by semantic
parser. The reasoner uses both the parser output and a selected subset of the
world knowledge to solve the questions. Wordnet taxonomies are used to solve
the precedence problem of exceptions. Large datasets are parsed, indexed and
kept in shared memory for quick re-use. GK is built on top of a conventional
high-performance resolution-based reasoner GKC [21] for conventional first order
logic. Thus GK inherits most of the capabilities and algorithms of GKC. The
main additional features of GK are following:

– Using a well-known answer clause mechanism for finding a number of differ-
ent answers, with a configurable limit.

– Finding expected proofs even if a knowledge base is inconsistent. Basically,
GK only accepts proofs which contain a clause originating from the question.

– Searching for both a proof of the question and a negation of the question /
negation of each concrete answer.

– Estimating the numeric confidence in the statements derived from knowledge
bases containing uncertain contrary and supporting evidence obtained from
different sources.

– Handling exceptions by implementing default logic via recursively deepening
iterations of searches with diminishing time limits.

– Performing reasoning by analogy via employing known similarity scores of
words along with exceptions.

The first four features are covered in our previous paper [23] and the fol-
lowing two are covered in [22]. The word similarity handling is currently in an
experimental phase: the initial experiments show that a naive implementation
creates an unmanageable search space explosion, and thus a layered approach is
necessary.

As a simple example of the basic features, consider sentences “John is nice.
John is not nice. Mike is nice. Steve is not nice.” GK output to the parsed
versions of the following questions will directly lead to these answers: “John is
nice?”: “Unknown”, “Mike is nice?”: “True”, “Mike is not nice?”: “False”, “Who
is nice?”: “Mike”, “Who is not nice?”: “Steve”. For a slightly more complex
example, consider the earlier “If an animal likes honey, then it is probably a
bear. Most bears are big, although young bears are not big. John is an animal
who likes honey. Mike is a young bear. Who is big?”. GK will output the following
proof in JSON, where we have removed quotation marks and a number of steps:

{result:answer found,

answers:[
{

8 T. Tammet et al.

answer:[[$ans,some_bear]],
blockers:[[$block,[$,bear,1],[$not,[prop,big,some_bear,$generic,$generic,[$ctxt,Pres,1]]]]],
confidence:0.85,
positive proof:
[
...,
[7,[mp,[5,1],6,fromgoal,0.85],

[[$block,[$,bear,1],[$not,[prop,big,some_bear,$generic,$generic,[$ctxt,Pres,1]]]],
[$ans,some_bear]]]

]},
{
answer:[[$ans,c1_John]],
blockers:[[$block,[$,bear,1],[$not,[prop,big,c1_John,$generic,$generic,[$ctxt,Pres,1]]]],

[$block,[$,animal,3],[$not,[isa,bear,c1_John]]]],
confidence:0.765,
positive proof:
[
[1,[in,frm_10,axiom,0.85],

[[$block,[$,bear,1],[$not,[prop,big,?:X,$generic,$generic,[$ctxt,Pres,1]]]],
[prop,big,?:X,$generic,$generic,[$ctxt,Pres,1]],
[-isa,bear,?:X]]],

[2,[in,frm_9,axiom,0.9],
[[$block,[$,animal,3],[$not,[isa,bear,?:X]]],
[-do2,like,?:X,?:Y,?:Z,[$ctxt,Pres,1]],
[-isa,honey,?:Y],[-isa,animal,?:X],[isa,bear,?:X]]],

...,
[18,[mp,[1,2],[17,1],fromaxiom,0.765],

[[$block,[$,bear,1],[$not,[prop,big,c1_John,$generic,$generic,[$ctxt,Pres,1]]]],
[$block,[$,animal,3],[$not,[isa,bear,c1_John]]],
[prop,big,c1_John,$generic,$generic,[$ctxt,Pres,1]]]],

...,
[21,[in,frm_30,goal,1],[[-$def2,?:X],[$ans,?:X]]],
[22,[mp,[20,2],21,fromgoal,0.765],

[[$block,[$,bear,1],[$not,[prop,big,c1_John,$generic,$generic,[$ctxt,Pres,1]]]],
[$block,[$,animal,3],[$not,[isa,bear,c1_John]]],
[$ans,c1_John]]]

]}
]}

Observe that we get two answers. The following NLP pipeline step removes
the generic [[$ans,some bear]], since the more informative [[$ans,c1 John]]

is available. Here both proofs contain only positive parts, although in the general
case we may find both a positive and a negative proof, each with their own
confidences. GK will throw away both the clauses produced during search and the
final answers which have a summary confidence below a configurable threshold.
GK will also throw away proofs which do not contain a goal clause.

The final answers contain blocker literals, which have been recursively checked
by separate proof searches before the final proof is accepted by GK. The details
of these failed searches are not shown in the final proof. Had we included the
sentence “John is not big” in our example, then the proof of the first blocker of
the main answer would have been found, thus disqualifying the proof and leaving
us with the final answer “Likely a bear.”.

4.4 Answers and Explanations in Natural Language

Answers and explanations are generated from the proof, with additional details
taken from the database of objects along with their properties as detected during
semantic parsing. While some of the principles were described in the previous

Automated Reasoning in Natural Language 9

section, there are two major tasks to perform: give a suitably detailed representa-
tion of objects in a proof (say, select between “a car”, “a red car”, “the red car”,
“Mike’s car” etc) and create a grammatically correct and easy-to-understand
textual representation of clauses. The system translates clauses in a proof one-
to-one to English sentences, as exemplified by the explanation generated from
the previously presented proof:

Likely john:
Confidence 76%.
Sentences used:
(1) If an animal likes honey, then it is probably a bear.
(2) Most bears are big, although young bears are not big.
(3) John is an animal who likes honey.
(4) Who is big?
Statements inferred:
(1) If X is a bear, then X is big. Confidence 85%. Why: sentence 2.
(2) If X does like Y and Y is a honey and X is an animal, then X is a bear.

Confidence 90%. Why: sentence 1.
(4) If John has a property def1, then John does like cs4. Why: sentence 3.
...
(18) John is big. Confidence 76%. Why: statements 1, 17.
...
(21) If X matches the query, then X is an answer. Why: the question.
(22) John is an answer. Confidence 76%. Why: statements 20, 21.

5 Performance and the Test Set

The system has miserable performance on most well-known natural language in-
ference or question answering benchmarks, the majority of which are oriented to-
wards machine learning. As an exception, the performance on the anti-machine-
learning question set HANS [11] is ca 95%, in contrast to the ca 60% performance
of LLM systems before the GPT3 family (random choice would give 50% per-
formance). The loss of 5% of HANS is due to the wrong UD parses chosen by
Stanza.

However, the system is able to solve almost all of the demonstration exam-
ples of the Allen AI ProofWriter system
https://proofwriter.apps.allenai.org/ and is able to solve inference problems the
current LLM systems cannot, like the examples presented in the introduction.
For regression testing we have built a set of ca 1600 simple questions with an-
swers, structured over different types of capabilities. This test set may be of use
for people working towards similar goals.

The runtime for the small examples presented in the paper is ca 0.5 seconds
on a Linux laptop with a graphics card usable by Stanza. Of this time, Stanza
UD parsing takes ca 0.17 seconds, UD to logic takes ca 0.04 seconds, and the rest
is spent by the reasoner. For more complex examples the reasoner may spend
unlimited time, i.e. the question is rather how complex questions can be solved
in a preconfigured time window. In case the size of the input problem is relatively
small and a tiny world model suffices for the solution, the correct answer is found
in ca 1-2 seconds. However, in case the system is given a large knowledge base
(KB) with a size of roughly one gigabyte, and the answer actually depends on
the KB, then the search space may explode and the system may fail to find
answer in a reasonable time. Efficiently handling a very large knowledge base

10 T. Tammet et al.

clearly requires suitable heuristics based on the semantics and interdependence
of rules / facts in the KB.

6 Towards a Hybrid Neurosymbolic System

Although the scope of the sentences successfully parsed and questions answered
could be improved by adding more and more specialized cases to the current
system, the cost/benefit ratio of this work would rapidly decrease. We’ll describe
the most promising avenues of extending the system with ML hybridization as
we currently see them.

Semantic parsing. The two main approaches would be (a) end-to-end learning
from sentences directly to extended logic as exemplified in [26], and (b) using ex-
isting LLMs or training specialized LLMs to perform simplification of sentences
to the level where a hand-made semantic parser is able to convert the sentence
to logic. Our initial experiments with ChatGPT have shown that using a suit-
able prompt causes the LLMs system to successfully split and simplify complex
sentences.

Automated reasoning. Despite being optimized for large knowledge bases and
performing well in reasoning competitions on such problems, our system often
fails to find nontrivial proofs in reasonable time in case a large knowledge base
is used. The main approaches here would be (a) learning to find a proof, based
on the experience of previous proofs (see [16] for an example), (b) using ma-
chine learning along with measures of semantic relatedness of formulas to the
assumption and the question (see [5]) for an example), (c) using LLMs to predict
intermediate results or relevant facts and rules. A significant boost in the terms
of usability could be achieved by integrating external systems like databases and
scientific computing with the automated reasoners.

The knowledge base. Publicly available knowledge bases do not focus on for-
malizing a basic world model, arguably critical for common-sense reasoning. It
is possible that a core part needs to be built by hand. On the other hand, the
existing knowledge bases along with large text corpuses can be extended by
creating crucial new uncertain rules using both simpler statistical methods and
more complex ML techniques: see [7] for a review.

7 Summary and Future Work

We have described an implementation of a full natural language inference and
question answering pipeline built around an extended first order reasoner. The
system is capable of understanding relatively simple sentences and giving rea-
sonable answers to questions, including the types currently out of scope of the
capabilities of LLMs. We plan to enhance the capabilities of the system by in-
corporating machine learning techniques to the components of pipeline, while
keeping the overall architecture, including the semantic parser, word knowledge
and a reasoner.

Automated Reasoning in Natural Language 11

References

1. Abzianidze, L.: Solving textual entailment with the theorem prover for nat-
ural language. Applied Mathematics and Informatics 25(2), 1–15 (2020),
http://www.viam.science.tsu.ge/Ami/2020 2/8 Lasha.pdf

2. Abzianidze, L., Kogkalidis, K.: A logic-based framework for natural language in-
ference in dutch. CoRR abs/2110.03323 (2021), https://arxiv.org/abs/2110.03323

3. Arnaout, H., Razniewski, S., Weikum, G., Pan, J.Z.: Uncommonsense: In-
formative negative knowledge about everyday concepts. In: Hasan, M.A.,
Xiong, L. (eds.) Proceedings of the 31st ACM International Conference on
Information & Knowledge Management, Atlanta, GA, USA, October 17-
21, 2022. pp. 37–46. ACM (2022). https://doi.org/10.1145/3511808.3557484,
https://doi.org/10.1145/3511808.3557484

4. Basu, K., Varanasi, S.C., Shakerin, F., Gupta, G.: Square: Semantics-
based question answering and reasoning engine. CoRR abs/2009.09158 (2020),
https://arxiv.org/abs/2009.10239

5. Furbach, U., Krämer, T., Schon, C.: Names are not just sound and smoke: Word
embeddings for axiom selection. In: Fontaine, P. (ed.) Proc. of CADE’2019 – the
27th Intl. Conf. on Automated Deduction. LNCS, vol. 11716, pp. 250–268. Springer
(2019)

6. Furbach, U., Glöckner, I., Pelzer, B.: An application of automated reasoning in
natural language question answering. Ai Communications 23(2-3), 241–265 (2010)

7. Han, X., Gao, T., Lin, Y., Peng, H., Yang, Y., Xiao, C., Liu, Z., Li, P., Zhou, J.,
Sun, M.: More data, more relations, more context and more openness: A review
and outlook for relation extraction. In: Proceedings of the 1st Conference of the
Asia-Pacific Chapter of the Association for Computational Linguistics and the
10th International Joint Conference on Natural Language Processing. pp. 745–758
(2020)

8. Hwang, J.D., Bhagavatula, C., Le Bras, R., Da, J., Sakaguchi, K., Bosselut, A.,
Choi, Y.: (comet-) atomic 2020: On symbolic and neural commonsense knowledge
graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 35,
pp. 6384–6392 (2021)

9. Järv, P., Tammet, T., Verrev, M., Draheim., D.: Knowledge integration for
commonsense reasoning with default logic. In: Proceedings of the 14th Inter-
national Joint Conference on Knowledge Discovery, Knowledge Engineering and
Knowledge Management - KEOD. pp. 148–155. INSTICC, SciTePress (2022).
https://doi.org/10.5220/0011532200003335

10. Kalyanpur, A., Breloff, T., Ferrucci, D.A., Lally, A., Jantos, J.: Braid: Weav-
ing symbolic and statistical knowledge into coherent logical explanations. CoRR
abs/2011.13354 (2020), https://arxiv.org/abs/2011.13354

11. McCoy, T., Pavlick, E., Linzen, T.: Right for the wrong reasons: Diagnosing syn-
tactic heuristics in natural language inference. In: Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics. pp. 3428–3448. Associ-
ation for Computational Linguistics (2019)

12. Mialon, G., Dess̀ı, R., Lomeli, M., Nalmpantis, C., Pasunuru, R., Raileanu, R.,
Rozière, B., Schick, T., Dwivedi-Yu, J., Celikyilmaz, A., Grave, E., LeCun, Y.,
Scialom, T.: Augmented language models: a survey. CoRR abs/2302.07842 (2023),
https://arxiv.org/abs/2302.07842

13. Mishra, B.D., Tandon, N., Clark, P.: Domain-targeted, high precision knowl-
edge extraction. Trans. Assoc. Comput. Linguistics 5, 233–246 (2017).
https://doi.org/10.1162/tacl a 00058, https://doi.org/10.1162/tacl a 00058

12 T. Tammet et al.

14. Nguyen, T.P., Razniewski, S., Romero, J., Weikum, G.: Refined commonsense
knowledge from large-scale web contents. IEEE Transactions on Knowledge and
Data Engineering (2022). https://doi.org/10.1109/TKDE.2022.3206505

15. Pendharkar, D., Basu, K., Shakerin, F., Gupta, G.: An asp-based approach to
answering natural language questions for texts. Theory and Practice of Logic Pro-
gramming 22(3), 419–443 (2022), https://arxiv.org/abs/2009.10239

16. Piepenbrock, J., Heskes, T., Janota, M., Urban, J.: Guiding an automated theorem
prover with neural rewriting. In: Automated Reasoning: 11th International Joint
Conference, IJCAR 2022, Haifa, Israel, August 8–10, 2022, Proceedings. pp. 597–
617. Springer (2022)

17. Rajasekharan, A., Zeng, Y., Padalkar, P., Gupta, G.: Reliable natural language
understanding with large language models and answer set programming. CoRR
abs/2302.03780 (2023), https://arxiv.org/abs/2302.03780

18. Ramachandran, D., Reagan, P., Goolsbey, K.: First-orderized researchcyc: Expres-
sivity and efficiency in a common-sense ontology. In: AAAI workshop on contexts
and ontologies: theory, practice and applications. pp. 33–40 (2005)

19. Romero, J., Razniewski, S., Pal, K., Pan, J.Z., Sakhadeo, A., Weikum, G.: Com-
monsense properties from query logs and question answering forums. In: Zhu, W.,
Tao, D., Cheng, X., Cui, P., Rundensteiner, E.A., Carmel, D., He, Q., Yu, J.X.
(eds.) Proc. of CIKM’19 – the 28th ACM Intl. Conf. on Information and Knowledge
Management. pp. 1411–1420. ACM (2019)

20. Speer, R., Chin, J., Havasi, C.: ConceptNet 5.5: An open multilingual graph of
general knowledge. In: Singh, S.P., Markovitch, S. (eds.) Proc. of AAAI’2017 – the
31st AAAI Conf. on Artificial Intelligence. pp. 4444–4451. AAAI (2017)

21. Tammet, T.: GKC: A reasoning system for large knowledge bases. In: Fontaine, P.
(ed.) Proc. of CADE’2019 – the 27th Intl. Conf. on Automated Deduction. LNCS,
vol. 11716, pp. 538–549. Springer (2019)

22. Tammet, T., Draheim, D., Järv, P.: Gk: Implementing full first order default logic
for commonsense reasoning (system description). In: Blanchette, J., Kovács, L.,
Pattinson, D. (eds.) IJCAR 2022: Automated Reasoning. LNCS, vol. 13385, pp.
300–309. Springer (2022)

23. Tammet, T., Järv, P., Draheim, D.: Confidences for commonsense reasoning. In:
Platzer A., S.G. (ed.) Automated Deduction – CADE 28. CADE 2021. LNCS, vol.
12699, pp. 507–524. Springer (2021)

24. Tammet, T., Sutcliffe, G.: Combining json-ld with first order logic. In: 2021 IEEE
15th International Conference on Semantic Computing (ICSC). pp. 256–261. IEEE
(2021)

25. Tandon, N., de Melo, G., Weikum, G.: Webchild 2.0 : Fine-grained commonsense
knowledge distillation. In: Bansal, M., Ji, H. (eds.) Proceedings of ACL 2017,
System Demonstrations. pp. 115–120. Association for Computational Linguistics
(2017). https://doi.org/10.18653/v1/P17-4020

26. Wang, C., Bos, J.: Comparing neural meaning-to-text approaches for dutch. Com-
putational Linguistics in the Netherlands 12, 269–286 (2022)

27. West, P., Bhagavatula, C., Hessel, J., Hwang, J.D., Jiang, L., Bras, R.L.,
Lu, X., Welleck, S., Choi, Y.: Symbolic knowledge distillation: from gen-
eral language models to commonsense models. CoRR abs/2110.07178 (2021),
https://arxiv.org/abs/2110.07178

